Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(3): e0261721, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35638781

RESUMO

Salmonella enterica serovar Typhimurium is an intracellular pathogen that parasitizes macrophages from within a vacuole. The vacuolar environment prompts the bacterium to regulate the lipid composition of the outer membrane (OM), and this influences host inflammation. S. Typhimurium regulates the levels of acidic glycerophospholipids known as cardiolipins (CL) within the OM, and mitochondrial CL molecules can prime and activate host inflammasomes. However, the contribution of S. Typhimurium's CL biosynthesis genes to intracellular survival, inflammasome activation, and pathogenesis had not been examined. S. Typhimurium genes encode three CL synthases. Single, double, and triple mutants were constructed. Similar to other Enterobacteriaceae, ClsA is the primary CL synthase for S. Typhimurium during logarithmic growth, while ClsB and ClsC contribute CL production in stationary phase. It was necessary to delete all three genes to diminish the CL content of the envelope. Despite being devoid of CL molecules, ΔclsABC mutants were highly virulent during oral and systemic infection for C57BL/6J mice. In macrophages, ΔclsA, ΔclsB, ΔclsC, and ΔclsAC mutants behaved like the wild type, whereas ΔclsAB, ΔclsBC, and ΔclsABC mutants were attenuated and elicited reduced amounts of secreted interleukin-1 beta (IL-1ß), IL-18, and lactate dehydrogenase. Hence, when clsA and clsC are deleted, clsB is necessary and sufficient to promote intracellular survival and inflammasome activation. Similarly, when clsB is deleted, clsA and clsC are necessary and sufficient. Therefore, the three CL synthase genes cooperatively and redundantly influence S. Typhimurium inflammasome activation and intracellular survival in C57BL/6J mouse macrophages but are dispensable for virulence in mice. IMPORTANCE Salmonella enterica serovar Typhimurium is a pathogenic Gram-negative bacterium that regulates the cardiolipin (CL) and lipopolysaccharide (LPS) composition of the outer membrane (OM) during infection. Mitochondrial CL molecules activate the inflammasome and its effector caspase-1, which initiates an inflammatory process called pyroptosis. Purified bacterial CL molecules also influence LPS activation of Toll-like receptor 4 (Tlr4). S. Typhimurium resides within macrophage vacuoles and activates Tlr4 and the inflammasome during infection. However, the contribution of the three bacterial CL synthase genes (cls) to microbial pathogenesis and inflammation had not been tested. This study supports that the genes encoding the CL synthases work coordinately to promote intracellular survival in macrophages and to activate the inflammasome but do not influence inflammatory cytokine production downstream of Tlr4 or virulence in C57BL/6J mice. The macrophage phenotypes are not directly attributable to CL production but are caused by deleting specific combinations of cls gene products.


Assuntos
Salmonella enterica , Salmonella typhimurium , Animais , Cardiolipinas , Inflamassomos/genética , Inflamação , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos C57BL , Sorogrupo , Receptor 4 Toll-Like/genética
2.
Infect Immun ; 90(2): e0049021, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34780276

RESUMO

Enterobacteriaceae use the periplasmic domain of the conserved inner membrane protein, PbgA/YejM, to regulate lipopolysaccharide (LPS) biogenesis. Salmonella enterica serovar Typhimurium (S. Typhimurium) relies on PbgA to cause systemic disease in mice and this involves functional interactions with LapB/YciM, FtsH, and LpxC. Escherichia coli PbgA interacts with LapB, an adaptor for the FtsH protease, via the transmembrane segments. LapB and FtsH control proteolysis of LpxC, the rate-limiting LPS biosynthesis enzyme. Lipid A-core, the hydrophobic anchor of LPS molecules, co-crystallizes with PbgA and interacts with residues in the basic region. The model predicts that PbgA-LapB detects periplasmic LPS molecules and prompts FtsH to degrade LpxC. However, the key residues and critical interactions are not defined. We establish that S. Typhimurium uses PbgA to regulate LpxC and define the contribution of two pairs of arginines within the basic region. PbgA R215 R216 form contacts with lipid A-core in the structure, and R231 R232 exist in an adjacent alpha helix. PbgA R215 R216 are necessary for S. Typhimurium to regulate LpxC, control lipid-A core biogenesis, promote survival in macrophages, and enhance virulence in mice. In contrast, PbgA R231 R232 are not necessary to regulate LpxC or to control lipid A-core levels, nor are they necessary to promote survival in macrophages or mice. However, residues R231 R232 are critical for infection lethality, and the persistent infection phenotype requires mouse Toll-like receptor four, which detects lipid A. Therefore, S. Typhimurium relies on PbgA's tandem arginines for multiple interconnected mechanisms of LPS regulation that enhance pathogenesis.


Assuntos
Proteínas de Escherichia coli , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Arginina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipídeo A/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Salmonella typhimurium/metabolismo
3.
J Vis Exp ; (158)2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338649

RESUMO

This method works by partitioning the envelope of Gram-negative bacteria into total, inner, and outer membrane (OM) fractions and concludes with assays to assess the purity of the bilayers. The OM has an increased overall density compared to the inner membrane, largely due to the presence of lipooligosaccharides (LOS) and lipopolysaccharides (LPS) within the outer leaflet. LOS and LPS molecules are amphipathic glycolipids that have a similar structure, which consists of a lipid-A disaccharolipid and core-oligosaccharide substituent. However, only LPS molecules are decorated with a third subunit known as the O-polysaccharide, or O-antigen. The type and amount of glycolipids present will impact an organism's OM density. Therefore, we tested whether the membranes of bacteria with varied glycolipid content could be similarly isolated using our technique. For the LPS-producing organisms, Salmonella enterica serovar Typhimurium and Escherichia coli, the membranes were easily isolated and the LPS O-antigen moiety did not impact bilayer partitioning. Acinetobacter baumannii produces LOS molecules, which have a similar mass to O-antigen deficient LPS molecules; however, the membranes of these microbes could not initially be separated. We reasoned that the OM of A. baumannii was less dense than that of Enterobacteriaceae, so the sucrose gradient was adjusted and the membranes were isolated. The technique can therefore be adapted and modified for use with other organisms.


Assuntos
Acinetobacter baumannii/química , Membrana Celular/metabolismo , Bactérias Gram-Negativas/química
4.
Infect Immun ; 88(7)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32253250

RESUMO

The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer that consists of inner leaflet phospholipids and outer leaflet lipopolysaccharides (LPS). The asymmetric character and unique biochemistry of LPS molecules contribute to the OM's ability to function as a molecular permeability barrier that protects the bacterium against hazards in the environment. Assembly and regulation of the OM have been extensively studied for understanding mechanisms of antibiotic resistance and bacterial defense against host immunity; however, there is little knowledge on how Gram-negative bacteria release their OMs into their environment to manipulate their hosts. Discoveries in bacterial lipid trafficking, OM lipid homeostasis, and host recognition of microbial patterns have shed new light on how microbes secrete OM vesicles (OMVs) to influence inflammation, cell death, and disease pathogenesis. Pathogens release OMVs that contain phospholipids, like cardiolipins, and components of LPS molecules, like lipid A endotoxins. These multiacylated lipid amphiphiles are molecular patterns that are differentially detected by host receptors like the Toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD-2), mouse caspase-11, and human caspases 4 and 5. We discuss how lipid ligands on OMVs engage these pattern recognition receptors on the membranes and in the cytosol of mammalian cells. We then detail how bacteria regulate OM lipid asymmetry, negative membrane curvature, and the phospholipid-to-LPS ratio to control OMV formation. The goal is to highlight intersections between OM lipid regulation and host immunity and to provide working models for how bacterial lipids influence vesicle formation.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Negativas/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Lipídeos de Membrana/metabolismo , Transporte Biológico , Suscetibilidade a Doenças , Endotoxinas/imunologia , Endotoxinas/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/imunologia , Piroptose/imunologia
5.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31611279

RESUMO

Salmonella enterica serovar Typhimurium (S Typhimurium) relies upon the inner membrane protein PbgA to enhance outer membrane (OM) integrity and promote virulence in mice. The PbgA transmembrane domain (residues 1 to 190) is essential for viability, while the periplasmic domain (residues 191 to 586) is dispensable. Residues within the basic region (residues 191 to 245) bind acidic phosphates on polar phospholipids, like for cardiolipins, and are necessary for salmonella OM integrity. S Typhimurium bacteria increase their OM cardiolipin concentrations during activation of the PhoPQ regulators. The mechanism involves PbgA's periplasmic globular region (residues 245 to 586), but the biological role of increasing cardiolipins on the surface is not understood. Nonsynonymous polymorphisms in three essential lipopolysaccharide (LPS) synthesis regulators, lapB (also known as yciM), ftsH, and lpxC, variably suppressed the defects in OM integrity, rifampin resistance, survival in macrophages, and systemic colonization of mice in the pbgAΔ191-586 mutant (in which the PbgA periplasmic domain from residues 191 to 586 is deleted). Compared to the OMs of the wild-type salmonellae, the OMs of the pbgA mutants had increased levels of lipid A-core molecules, cardiolipins, and phosphatidylethanolamines and decreased levels of specific phospholipids with cyclopropanated fatty acids. Complementation and substitution mutations in LapB and LpxC generally restored the phospholipid and LPS assembly defects for the pbgA mutants. During bacteremia, mice infected with the pbgA mutants survived and cleared the bacteria, while animals infected with wild-type salmonellae succumbed within 1 week. Remarkably, wild-type mice survived asymptomatically with pbgA-lpxC salmonellae in their livers and spleens for months, but Toll-like receptor 4-deficient animals succumbed to these infections within roughly 1 week. In summary, S Typhimurium uses PbgA to influence LPS assembly during stress in order to survive, adapt, and proliferate within the host environment.


Assuntos
Bacteriemia/microbiologia , Lipopolissacarídeos/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Animais , Teste de Complementação Genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Salmonelose Animal/microbiologia , Deleção de Sequência , Análise de Sobrevida , Virulência
6.
PLoS One ; 14(9): e0223025, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560732

RESUMO

Clostridium difficile (Cd) infection (CDI) typically occurs after antibiotic usage perturbs the gut microbiota. Mucosa-associated invariant T cells (MAIT) are found in the gut and their development is dependent on Major histocompatibility complex-related protein 1 (MR1) and the host microbiome. Here we were interested in determining whether the absence of MR1 impacts resistance to CDI. To this end, wild-type (WT) and MR1-/- mice were treated with antibiotics and then infected with Cd spores. Surprisingly, MR1-/- mice exhibited resistance to Cd colonization. 16S rRNA gene sequencing of feces revealed inherent differences in microbial composition. This colonization resistance was transferred from MR1-/- to WT mice via fecal microbiota transplantation, suggesting that MR1-dependent factors influence the microbiota, leading to CDI susceptibility.


Assuntos
Infecções por Clostridium/imunologia , Resistência à Doença/genética , Microbioma Gastrointestinal/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Menor/genética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Cefoperazona/administração & dosagem , Cefoperazona/efeitos adversos , Infecções por Clostridium/etiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Modelos Animais de Doenças , Resistência à Doença/imunologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Organismos Livres de Patógenos Específicos
7.
PLoS Pathog ; 13(7): e1006443, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28704538

RESUMO

Clostridium difficile (C. difficile) is an anaerobic gram-positive pathogen that is the leading cause of nosocomial bacterial infection globally. C. difficile infection (CDI) typically occurs after ingestion of infectious spores by a patient that has been treated with broad-spectrum antibiotics. While CDI is a toxin-mediated disease, transmission and pathogenesis are dependent on the ability to produce viable spores. These spores must become metabolically active (germinate) in order to cause disease. C. difficile spore germination occurs when spores encounter bile salts and other co-germinants within the small intestine, however, the germination signaling cascade is unclear. Here we describe a signaling role for Ca2+ during C. difficile spore germination and provide direct evidence that intestinal Ca2+ coordinates with bile salts to stimulate germination. Endogenous Ca2+ (released from within the spore) and a putative AAA+ ATPase, encoded by Cd630_32980, are both essential for taurocholate-glycine induced germination in the absence of exogenous Ca2+. However, environmental Ca2+ replaces glycine as a co-germinant and circumvents the need for endogenous Ca2+ fluxes. Cd630_32980 is dispensable for colonization in a murine model of C. difficile infection and ex vivo germination in mouse ileal contents. Calcium-depletion of the ileal contents prevented mutant spore germination and reduced WT spore germination by 90%, indicating that Ca2+ present within the gastrointestinal tract plays a critical role in C. difficile germination, colonization, and pathogenesis. These data provide a biological mechanism that may explain why individuals with inefficient intestinal calcium absorption (e.g., vitamin D deficiency, proton pump inhibitor use) are more prone to CDI and suggest that modulating free intestinal calcium is a potential strategy to curb the incidence of CDI.


Assuntos
Ácidos e Sais Biliares/metabolismo , Cálcio/metabolismo , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Intestino Delgado/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Proteínas de Bactérias/metabolismo , Sinalização do Cálcio , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/metabolismo , Humanos , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...